Log In Start studying!

Select your language

Suggested languages for you:
Vaia - The all-in-one study app.
4.8 • +11k Ratings
More than 3 Million Downloads
Free
|
|

Chemical Calculations

If you have cooked food previously, you know even a simple dish can have quite a few ingredients. When following a recipe, you know the exact proportions of each ingredient. For example, in a cake recipe for 250g of flour added, we need 250g of sugar, and this gives us the exact measurements that we need for a perfect cake.…

Content verified by subject matter experts
Free Vaia App with over 20 million students
Mockup Schule

Explore our app and discover over 50 million learning materials for free.

Chemical Calculations

Chemical Calculations
Illustration

Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Jetzt kostenlos anmelden

Nie wieder prokastinieren mit unseren Lernerinnerungen.

Jetzt kostenlos anmelden
Illustration

If you have cooked food previously, you know even a simple dish can have quite a few ingredients. When following a recipe, you know the exact proportions of each ingredient. For example, in a cake recipe for 250g of flour added, we need 250g of sugar, and this gives us the exact measurements that we need for a perfect cake. But when you’re making your own recipe or trying to recreate something you do not know the proportions, like do you need brown sugar or white sugar or 1 teaspoon of salt or 1 tablespoon.

Fig. 1: Ingredients for a cake

So, how does this relate to chemistry? Well, when we want to react substances together, through different equations we can determine how much of each reactant we need, how much of our desired product is produced and even find out what concentration we require, and that is precisely what we are going to go through in this explanation.

  • We will first explore what relative mass is, then explore its relationship with moles.
  • After this, we will explore percentage yield, and how to work it out.
  • We will then go on to explore atom economy.
  • Then we will briefly explore titrations.
  • Finally, we will explore some equations related to gases.

Mass and mole calculations in chemical equations

Relative atomic mass, which can also be symbolised by this expression ‘Ar’, is the average mass of a substance compared to 1/12 mass of carbon-12. We measure the atomic mass by comparing it to carbon-12 because, carbon-12 has exactly 12 units, 6 protons and 6 neutrons. In addition, we use the term average because different elements can have different isotopes, so it is the average mass of the isotopes as well.

Isotopes are elements that have the same number of protons and neutrons, but different number of electrons.

From relative atomic mass, we can calculate the relative formula mass, which is symbolised by this expression ‘Mr’. The way we do this is by adding up the relative atomic masses for all the different elements in a compound.

Water is written as H2O, to find the relative formula mass, you first identify the relative atomic mass of each element:

  • Hydrogen (H) = 1
  • Oxygen (O) = 16

You then identify how much of each element there is:

There are two hydrogens and one oxygen

Then you add everything up, and if there is more than one of each element, you will multiply the relative atomic mass of the elements for how many there are:

Relative formula mass of H2O:

16+1+1 = 18

So our relative formula mass of one molecule of water is 18.

The following section is only required for those studying the higher tier of GCSE Chemistry.

We will also use relative atomic mass and relative formula mass to work out moles. Moles can be described as the amount of substance of a substance. One mole is 6.02·1023 which is absolutely massive and this is known as Avogadro constant.

In order to work out moles, we can use the following equation:

\[moles = mass (g) \div A_r\]

Or if its for a molecule:

\[moles = mass (g) \div M_r\]

Therefore, we can actually do three things with this equation:

  1. Find out moles.
  2. Find out the mass of substance in grams.
  3. Find out the relative atomic mass or relative formula mass.

And this can be done as long as we have two of the three factors.

Chemical calculations percentage yield

In a reaction, reactants react with each other to make a final product. The mass of the product is what we will call the yield. Sometimes the amount of product that is produced, this is known as the actual mass of product that is produced, is different to what we calculated using our chemical equation, which is the theoretical mass produced. When we divide this by each other, then multiply by 100 we find out what our percentage yield is and this can be displayed in the following equation:

\[\text{yield percentage} = \text{ actual yield} \div \text{theoretical yield} \times 100 \]

If we calculate that a reaction will produce 100kg, but after carrying out the reaction we produce 70kg, what is the percentage yield?

First, we identify the actual yield and the theoretical yield:

  • Actual yield: 70kg
  • Theoretical yield: 100kg

We then plug all these numbers into our equation:

\[\text{yield percentage} = 70 (kg) \div 100(kg) \times 100 \]

Our percentage yield is: 70%

Percentage yield is important, as especially within chemical industries we need to ensure, as chemists we are able to have the highest yield. Sometimes, there are factors that can affect our yield, such as; some product is left in the apparatus and is therefore not measures, reactant may not be pure or we may get additional products.

Atom Economy

Atom economy is another way in which we can analyse our final product. As we learn how to be more sustainable an important way that we need to explore this is within reactions. We need to be able to produce reactions where we do not waste a lot of energy and raw materials and this is where looking at the atom economy can help us. By exploring the atom economy, it allows us to explore how much of the mass of reactants becomes our desired product. It is very similar to how we calculate percentage yield but instead of looking as the mass, we look at relative formula mass and this can be seen in the equation below.

\[\text{percentage atom economy} = \text{ relative formula mass of desired product} \div \text{relative formula mass of reactants} \times 100 \]

Titration chemistry calculations

Titration set-up, Vaia Originals

Fig. 2: Titration set-up.

Titrations are a way for us to monitor when a neutralisation reaction taken place. We use an acid, an alkali and an indicator. The indicator allows us to determine when this reaction has taken place, and we term this as the ‘end point’. If you like at the explanation of Titrations, you will be able to explore how we carry out this reaction, including a step-by-step guide as well as all the apparatus you may need.

Titrations are useful because they allow us to determine the concentration of an unknown substance. We do this by using a balanced equation, having the other reactant with a known concentration and the relative formula mass of the substances.

Chemical calculations gases

There are so many different things that contain gas, we have car wheels, airbags, fizzy drinks and so much more. Each of these have a specific amount, to ensure there is enough for the use and to ensure the object does not explode. To achieve this, scientists needed a way to determine the volume of gas required. They first determined that that different temperature and pressure was a contributing reason, and then they concluded on an equation.

For your GCSE’s you only need to know how to calculate the volume of gas at room temperature which is 20℃and pressure which is 1 atm, whereby the volume of 1 mole of gas is 24cm3

To determine the volume of gas in cm3:

\[\text{moles of gas} = \text{volume of gas (dm^3)} \div 24 dm^3\]

To determine the volume of gas in dm3:

\[\text{moles of gas} = \text{volume of gas (cm^3)} \div 24000 cm^3\]

Let us go through an example to consolidate our knowledge:

The airbag in a car has been inflated by 62g of nitrogen (N2) when it is activated. What is the volume that nitrogen gas occupies at room temperature and pressure, when the Ar of nitrogen is 14.

For this first question, we first need to calculate the moles:

\[moles = mass \div M_r\]

We have the mass which is 62g and as there are two molecules of nitrogen, it means relative formula mass is \(14\times 2 =28)

Now we can put these numbers into our equation:

\[moles = 62 \div 28 = 2.21 mol\]

Now we need to rearrange our gas equation, so we can find the volume:

\[volume = moles \times 24dm^3\]

Finally, we can plug our numbers in to find our answer:

\[volume = 2.21 \times 24dm^3 = 53.14 dm^3\]

Note that as we used the equation with dm3, our final volume is in dm3.

Chemical Calculations - Key takeaways

  • Relative atomic mass is the average mass of a substance compared to 1/12 mass of carbon-12.
  • Moles can be described as the amount of substance of a substance.
  • One mole is 6.02 x 1023
  • The relationship between moles, mass and relative atomic mass is seen in this equation: \(moles = mass (g) \div A_r\)
  • Percentage yield allows us to determine, the mass of the product actually made, compares to what was calculated.
  • Atom economy allows us to explore how much of a reactant was made into product.
  • Titrations are a way of exploring neutralisation reactions between an acid and an alkali.
  • At room temperature and pressure, we can determine the moles of gas using this equation: \(\text{moles of gas} = \text{volume of gas (dm^3)} \div 24 dm^3\)

Frequently Asked Questions about Chemical Calculations

We use the equation:


percentage yield = actual yield ÷ theoretical yield x 100

We can use molecules to calculate mass and to work out the volume of gas.

To calculate the amount of substance in moles, you can use the following equation:


\[moles = mass (g) \div A_r\]

You can do this by adding the atomic mass of all the elements for your required compound.

You can calculate volume by using the following equation:

\[\text{moles of gas} = \text{volume of gas (dm^3)} \div 24 dm^3\]

Final Chemical Calculations Quiz

Chemical Calculations Quiz - Teste dein Wissen

Question

What do we use titrations?

Show answer

Answer

Titrations are used to determine how much of an acid and alkali that we require in order for neutralisation to take place.

Show question

Question

What is the end point of a titration?

Show answer

Answer

The exact amount of acid and alkali we require to neutralise a reaction is reached

Show question

Question

Which of these apparatus do we use in a titration reaction?

Show answer

Answer

Burette

Show question

Question

Which of these apparatus do we use in a titration reaction?

Show answer

Answer

White tile

Show question

Question

Which of these apparatus do we use in a titration reaction?

Show answer

Answer

Measuring cylinder

Show question

Question

Which of these apparatus do we use in a titration reaction?

Show answer

Answer

Aqueous acid 

Show question

Question

Which of these apparatus do we use in a titration reaction?

Show answer

Answer

Distilled water

Show question

Question

What do we use to indicate the end point of a titration?

Show answer

Answer

Acid/base indicator 

Show question

Question

What is the equation that relates concentration, moles and volume?

Show answer

Answer

moles = concentration x volume

Show question

Question

What are the units for concentration?

Show answer

Answer

mol/dm3 

Show question

Question

If the volume of potassium hydroxide is 20.0 cm3 and the moles is 0.0125. What is the concentration?

Show answer

Answer

0.625 mol/dm3 

Show question

Question

If the volume of potassium hydroxide is 20.0 cm3 and the moles is 0.0325. What is the concentration?

Show answer

Answer

1.625 mol/dm3 

Show question

Question

If the volume of potassium hydroxide is 15.0 cm3 and the moles is 0.0325. What is the concentration?

Show answer

Answer

2.167 mol/dm3 

Show question

Question

If the volume of potassium hydroxide is 15.0 cm3 and the moles is 0.0125. What is the concentration?

Show answer

Answer

0.833 mol/dm3

Show question

Question

If the volume of potassium hydroxide is 30.0 cm3 and the moles is 0.0125. What is the concentration?

Show answer

Answer

0.417mol/dm3

Show question

Question

What is the definition of relative atomic mass?

Show answer

Answer

The average mass of a substance compared to 1/12 mass of carbon-12

Show question

Question

What is the definition of moles?

Show answer

Answer

The average mass of a substance compared to 1/12 mass of carbon-12

Show question

Question

How much is one mole?

Show answer

Answer

6.02 x 1023

Show question

Question

What is this number known as 6.02 x 1023?

Show answer

Answer

Avogadro constant

Show question

Question

What does percentage yield allow us to determine?

Show answer

Answer

The mass of the product actually made, compared to what was calculated

Show question

Question

What does atom economy allow us to determine?

Show answer

Answer

How much of a reactant was made into product

Show question

Question

If the mass of oxygen is 6g and the Ar is 16, what is the moles?

Show answer

Answer

0.19

Show question

Question

If the mass of oxygen is 3.4g and the Ar is 16, what is the moles?

Show answer

Answer

0.12

Show question

Question

If the mass of oxygen is 24g and the Ar is 16, what is the moles?

Show answer

Answer

0.75

Show question

Question

If the actual yield of a reaction is 24g and the theoretical yield is 32g, what is the percentage yield?

Show answer

Answer

75%

Show question

Question

If the actual yield of a reaction is 9g and the theoretical yield is 32g, what is the percentage yield?

Show answer

Answer

28.13%

Show question

Question

If the actual yield of a reaction is 17g and the theoretical yield is 21g, what is the percentage yield?

Show answer

Answer

80.95%

Show question

Question

At room temperature and pressure, if nitrogen gas has a volume of 56 dm3, what is the moles?

Show answer

Answer

2.3 mol

Show question

Question

At room temperature and pressure, if nitrogen gas has a volume of 32 dm3, what is the moles?

Show answer

Answer

1.3 mol

Show question

Question

At room temperature and pressure, if nitrogen gas has a volume of 17 dm3, what is the moles?

Show answer

Answer

1.4 mol

Show question

Question

What is the concentration, if we have 3 moles of oxygen in 125 dm3 of water?

Show answer

Answer

0.024 mol/dm3

Show question

Question


What is the concentration, if we have 3 moles of oxygen in 175 dm3 of water?

Show answer

Answer

0.017 mol/dm3

Show question

Question

What is the concentration, if we have 2.7 moles of oxygen in 175 dm3 of water?

Show answer

Answer

0.015 mol/dm3

Show question

Question

What is the concentration, if we have 4.3 moles of oxygen in 175 dm3 of water?

Show answer

Answer

0.025 mol/dm3

Show question

Question

What is the concentration, if we have 56g of oxygen in 175 dm3 of water?

Show answer

Answer

0.32 mol/dm3

Show question

Question

What is the concentration, if we have 16g of oxygen in 2000 dm3 of water?

Show answer

Answer

0.08 g/dm3

Show question

Question

What is the concentration, if we have 66g of oxygen in 1500 dm3 of water?

Show answer

Answer

0.044 g/dm3

Show question

Question

What is the concentration, if we have 3.1g of oxygen in 1500 dm3 of water?

Show answer

Answer

0.00207 g/dm3

Show question

Question

What is the concentration, if we have 3.1g of oxygen in 160 dm3 of water?

Show answer

Answer

0.019 g/dm3

Show question

Question

What is a mole in chemistry?

Show answer

Answer

The standard unit of the amount of substance in chemistry. It is a way of measuring large amounts of minuscule entities such as atoms, molecules, and electrons, 

Show question

Question

What is the unit for the number of moles?

Show answer

Answer

mol

Show question

Question

One mole of any substance equals _____.

Show answer

Answer

Its relative atomic or formula mass in grams.

Show question

Question

True or false? One mole of carbon atoms has the same mass as one mole of oxygen atoms,

Show answer

Answer

False. The mass of one mole of any substance depends on its relative atomic or formula mass.

Show question

Question

True or false? One mole of carbon atoms contains the same number of entities as one mole of oxygen atoms.

Show answer

Answer

True. One mole of any substance always contains the same number of entities.

Show question

Question

What is the link between the Avogadro constant and moles?

Show answer

Answer

The number of entities in one mole of any substance is given by a number known as the Avogadro constant, which equals 6.02 × 1023.

Show question

Question

How many atoms are in one mole of carbon atoms?

Show answer

Answer

6.02 × 1023

Show question

Question

How many molecules are in three moles of O2?

Show answer

Answer

1.806 × 1024

Show question

Question

The mass of one mole of any substance equals ___

Show answer

Answer

Its Ar or Mr in grams.

Show question

Question

What is the mass of 2.5 moles of O2 molecules?

Show answer

Answer

80 g

Show question

Question

3.2 moles of a compound has a mass of 96 grams. What is the relative formula mass of the substance?

Show answer

Answer

96

Show question

60%

of the users don't pass the Chemical Calculations quiz! Will you pass the quiz?

Start Quiz

How would you like to learn this content?

Creating flashcards
Studying with content from your peer
Taking a short quiz

94% of StudySmarter users achieve better grades.

Sign up for free!

94% of StudySmarter users achieve better grades.

Sign up for free!

How would you like to learn this content?

Creating flashcards
Studying with content from your peer
Taking a short quiz

Free chemistry cheat sheet!

Everything you need to know on . A perfect summary so you can easily remember everything.

Access cheat sheet

Discover the right content for your subjects

No need to cheat if you have everything you need to succeed! Packed into one app!

Study Plan

Be perfectly prepared on time with an individual plan.

Quizzes

Test your knowledge with gamified quizzes.

Flashcards

Create and find flashcards in record time.

Notes

Create beautiful notes faster than ever before.

Study Sets

Have all your study materials in one place.

Documents

Upload unlimited documents and save them online.

Study Analytics

Identify your study strength and weaknesses.

Weekly Goals

Set individual study goals and earn points reaching them.

Smart Reminders

Stop procrastinating with our study reminders.

Rewards

Earn points, unlock badges and level up while studying.

Magic Marker

Create flashcards in notes completely automatically.

Smart Formatting

Create the most beautiful study materials using our templates.

Sign up to highlight and take notes. It’s 100% free.

Start learning with Vaia, the only learning app you need.

Sign up now for free
Illustration